You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity.
Read More

Structural and Functional Characterization of a Novel Scorpion Toxin that Inhibits NaV1.8 via Interactions With the DI Voltage Sensor and DII Pore Module
Voltage-gated sodium channel NaV1.8 regulates transmission of pain signals to the brain. While NaV1.8 has the potential to serve as a drug target, the molecular mechanisms that shape NaV1.8 gating are not completely understood, particularly mechanisms that couple activation to inactivation. Interactions between toxin producing animals and their predators provide a novel approach for investigating NaV structure-function relationships. Arizona bark scorpions produce Na+ channel toxins that initiate pain signaling.
Read More

Advances in venomics: Modern separation techniques and mass spectrometry
Snake venoms are complex chemical mixtures of biologically active proteins and non-protein components. Toxins have a wide range of targets and effects to include ion channels and membrane receptors, and platelet aggregation and platelet plug formation. Toxins target these effectors and effects at high affinity and selectivity. From a pharmacological perspective, snake venom compounds are a valuable resource for drug discovery and development.
Read More